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4801. Assume, for a contradiction, that loga b is rational,
and can be expressed, for p, q ∈ Z, as loga b = p/q.

Exponentiating both sides over base a, b = ap/q.
Raising both sides to the power q, we reach

bq = ap.

Both sides are integers. The lhs has no factors
of a, so the rhs must also have no factors of a.
Hence, p = 0, giving loga b = 0. But loga b ̸= 0,
since b ̸= 1. This is a contradiction. Therefore, if
a and b are coprime, then loga b is irrational.

4802. Call the upwards acceleration of the pulley a. If
the bob of mass m1 remains at rest, then the bob
of mass m2 must be accelerating upwards at 2a.
The force diagrams are

m1 m2

m1g m2g

T T

0 2a

So, T = m1g and m2g − T = 2m2a. Solving these,

a = m2g − m1g

2m2
.

If instead we keep the bob of mass m2 at rest, then
the acceleration of the pulley must be downwards
rather than upwards. Other than this, the problem
is the same. So, the (signed) upwards accelerations
that keep each bob at rest are

Bob of mass m1 at rest : a1 = m2g − m1g

2m2
,

Bob of mass m2 at rest : a2 = m1g − m2g

2m1
.

4803. Let the functions have definitions f(x) = ax + b

and g(x) = cx + d. Applying f three times,

f(x) = ax + b

=⇒ f2(x) = a(ax + b) + b

≡ ax2 + ab + b

∴ f3(x) = a(ax2 + ab + b) + b

= a3x + a2b + ab + b.

Stating the same result for g3(x), we know that

a3x + a2b + ab + b ≡ c3x + c2d + cd + d.

Equating coefficients of x gives a3 = c3. Since
there is only one cube root, this implies a = c.
Substituting this back into the constant terms,

a2b + ab + b = a2d + ad + d

=⇒ b(a2 + a + 1) = d(a2 + a + 1).

The quadratic factor has ∆ = −3 < 0, so can’t be
zero. Hence, we can divide by it, giving b = d. So,
f and g are the same function, as required.

4804. Written longhand, the graph is

y = 1
x + 3 + 1

x + 2 + ... + 1
x − 3 .

This has asymptotes at x = −3, −2, ..., 3. At each,
there is sign change. Consider the behaviour either
side of the asymptote x = p.

1 As x → p−, the dominating asymptotic term
is negative, so y → −∞.

2 As x → p+, the dominating asymptotic term
is positive, so y → ∞.

There is also a horizontal asymptote at y = 0. So,
the curve is

x

y

4805. Let the outer pentagon have unit side length. A
regular pentagon has interior angles of 108° and
exterior angles of 72°.

1 The isosceles triangles with one vertex on the
outer pentagon have angles (72°, 72°, 36°).

2 The isosceles triangles with two vertices on
the outer pentagon have (36°, 36°, 108°).

Bisecting one of the latter isosceles triangles gives
a right-angled triangle with angle 36° and adjacent
side 1

2 . Its hypotenuse is 1
2 sec 36°. Bisecting one

of the former, we have a right-angled triangle with
angle 18° and hypotenuse 1

2 sec 36°. Its opposite
is 1

2 sec 36° sin 18°. The side length of the smaller
pentagon is twice the above, which is

sec 36° sin 18°.

Consider the double-angle result

sin 72° = 2 sin 36° cos 36°.

We can rearrange this to

sec 36° = 2 sin 36°
sin 72°

= 2 sin 36°
cos 18°

= 4 sin 18° cos 18°
cos 18°

= 4 sin 18°.

So, the ratio of side lengths is 1 : 4 sin2 18°.
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4806. Let u = ln x so that x = eu and dx = eu du. The
new limits are −∞ to 0. Enacting the substitution,∫ 1

0
(ln x)3 dx

=
∫ 0

−∞
u3eu du.

We use the tabular integration method:

Signs Derivatives Integrals
+ u3 eu

− 3u2 eu

+ 6u eu

− 6 eu

+ 0 eu

This gives∫
u3eu dx = (u3 − 3u2 + 6u − 6)eu + c.

So, the indefinite integral is[
(u3 − 3u2 + 6u − 6)eu

]0

−∞
.

As u → −∞, the exponential eu dominates the
polynomial factor, so that the lower limit is zero.
The upper limit is −6. So,∫ 1

0
(ln x)3 dx = −6, as required.

4807. Let the x intercepts be {b − d, b, b + d}. Apply the
following transformations to the curve:

1 translate by −bi, so that the x intercepts are
{−d, 0, d},

2 stretch by scale factor 1
d in the x direction, so

that the x intercepts are {−1, 0, 1},

3 stretch by some (±) scale factor in the y

direction, so that the x intercepts remain
{−1, 0, 1} and the graph is now monic.

By the factor theorem, a monic cubic y = f(x)
with x intercepts at {−1, 0, 1} is

y = (x + 1)x(x − 1)
≡ x3 − x.

The result is proved by construction.

4808. (a) The values are

x 0.1 0.2 0.3
cos x 0.995004 0.980067 0.955336
c2 x 0.995 0.98 0.955

(b) We want c4(x) ≈ cos(x), so

cos x ≈ 1 − 1
2 x2 + kx4

= c2(x) + kx4.

So, kx4 ≈ cos x − c2(x). Taking logs,

ln k + 4 ln x ≈ ln
(
cos(x) − c2(x)

)
.

This is an approximately linear relationship
between ln

(
cos(x) − c2(x)

)
and ln x.

ln x −2.303 −1.609 −1.204
ln
(
cos(x) − c2(x)

)
−12.39 −9.617 −7.997

Plotting these,

(−2.303, −12.39)

(−1.609, −9.617)

(−1.204, −7.997)

Since these three points are approximately
collinear, a polynomial relationship holds well.
The gradient of the above line, using the outer
two points, is 3.997 ≈ 4. So, the polynomial
relationship is indeed quartic. Using the point
(−2.303, −12.39),

ln k + 4 · −2.303 ≈ −12.39
=⇒ ln k ≈ −3.178
=⇒ k ≈ 0.04166...

The proposed value is 1
24 = 0.0416̇. So, the

correct quartic approximation uses k = 1
24 :

c4(x) = 1 − 1
2 x2 + 1

24 x4.

4809. The chain rule gives

a = dv

dt

≡ dv

dx
× dx

dt

= dv

dx
v.

So, the de may be rewritten as

v
dv

dx
= 3

2 x2.

Separating the variables,∫
v dv =

∫
3
2 x2 dx

=⇒ 1
2 v2 = 1

2 x3 + c

=⇒ v2 = x3 + d

∴ |v| =
√

x3 + d.

For large x, the constant d becomes negligible.
Hence, |v| is approximately proportional to

√
x3,

which is x
3
2 , as required.
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4810. Reflection in the line y = x + c is equivalent to
reflection in the line y = x, followed by translation
by vector −ci + cj.

• Reflection in y = x gives x = ay2 + by2 + c.
• Translation by −ci+cj means replacement of

x by x+c and replacement of y by y−c. This
gives x + c = a(y − c)2 + b(y − c) + c.

Simplifying, the transformed parabola is

x = a(y − c)2 + b(y − c).

4811. (a) The derivative is sec2 x. So, the gradient of the
normal at x = p is − cos2 p. The equation of
the normal is therefore

y − tan p = − cos2 p(x − p)
=⇒ y = (p − x) cos2 p + tan p.

(b) The first two branches of y = tan x, over the
two domains (−π/2, π/2) and (π/2, 3π/2), have a
centre of rotational symmetry at (π/2, 0):

x

y

π
2

By symmetry and the shape of the curve, the
shortest path between these two branches must
pass through (π/2, 0), thereby having the form
y = m(x − π/2).

(c) Substituting the point (π/2, 0) into the normal
in part (a),

0 =
(
p − π

2
)

cos2 p + tan p.

This is not analytically solvable. The Newton-
Raphson iteration is

pn+1 = pn

−
(
pn − π

2
)

cos2 pn + tan pn

cos2 pn −
(
pn − π

2
)

sin 2pn + sec2 pn

.

With p0 = 1, we get p1 = 0.6717, and then
pn → 0.59251. The shortest distance is

d = 2
√(

0.59251 − π
2
)2 + tan2 0.59251

= 2.375069...

= 2.375 (4sf), as required.

4812. We begin with the angle bisectors at A and B,
intersecting at X, together with perpendiculars
drawn to all three sides. We need to show that
the dotted line CX bisects the angle at C.

A C

B

X

D

F

E

Triangles AFX and ADX are congruent, as are
BDX and BEX. So, perpendiculars DX, EX,
FX are all the same length. Triangles ECX and
F CX are right-angled, with the hypotenuse CX

in common and |EX| = |FX|. Hence, they are
congruent, proving that CX bisects angle C. The
angle bisectors are therefore concurrent.

Nota Bene

The fact that the three perpendicular bisectors
DX, EX, FX are all the same length is what gives
point X its name: it is the incentre of the triangle,
which is the centre of the largest circle which can
be inscribed.

4813. Completing the square, the denominator is

(x + 4)2 + 1.

So, let x + 4 = tan θ. This gives dx = sec2 θ dθ.
Enacting the substitution,∫ 1

(x + 4)2 + 1 dx

=
∫ 1

tan2 θ + 1
sec2 θ dθ

=
∫

1 dθ

= θ + c

= arctan(x + 4) + c.

4814. If y = g′(x) has rotational symmetry around (a, b),
then g′(a + x) and g′(a − x) are equidistant from
b. Put into algebra, this is

g′(a + x) − b = b − g′(a − x)
=⇒ g′(a + x) + g′(a − x) = 2b.

Integrating this, we get a minus sign in the second
term by the reverse chain rule:

g(a + x) − g(a − x) = 2bx + c.

So, as required, y = g(a + x) − g(a − x) is linear,
with gradient 2b.
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4815. The shortest distance between the centre of the
tetrahedron and one of its faces is to the centre
of that face. Placing the relevant face flat to the
ground, this is simply the vertical height of the
centre of the tetrahedron.

•

The total height of the tetrahedron is
√

6/3, as can
be found by elementary trigonometry.
The centre of a 2d triangle lies 2/3 of the way along
its medians. By higher-dimensional analogy, the
centre of a 3d tetrahedron lies 3/4 of the way along
its medians. So, the height of the centre and thus
the radius of the insphere is

r =
√

6
3 × 1

4 = 1√
24 , as required.

4816. (a) Expanding the factors on the rhs,

sin
(

P +Q
2

)
≡ sin P

2 cos Q
2 + cos P

2 sin Q
2 ,

sin
(

P −Q
2

)
≡ sin P

2 cos Q
2 − cos P

2 sin Q
2 .

The product of these is a difference of two
squares. So, the rhs of the identity is

2
(

sin2 P
2 cos2 Q

2 − cos2 P
2 sin2 Q

2

)
≡ 2

(
sin2 P

2 cos2 Q
2 − cos2 P

2

(
1 − cos2 Q

2

))
≡ 2

(
cos2 Q

2 − cos2 P
2

)
.

Using double-angle formulae, this is

2
( 1

2 (cos Q + 1) − 1
2 (cos P + 1)

)
≡ cos Q − cos P, as required.

(b) Rearranging,

cos 6x − cos 2x + sin 4x = 0

Using the sum-to-product formula,

2 sin 4x sin(−2x) + sin 4x = 0
=⇒ sin 4x(−2 sin 2x + 1) = 0
=⇒ sin 4x = 0 or sin 2x = 1

2 .

Over the domain [0, π/2], the solution is

x = 0, π
12 , π

4 , 5π
12 , π

2 .

4817. We can rule 1 and 2 out, due to the presence of
x and y in unsquared form. This means 1 and 2
do not have the required symmetry: xy = 1 is a
boundary curve, but xy = −1 isn’t.
Then 3 and 4 are negatives. Testing the origin,
(0, 0) satisfies 4 but not 3 . Hence, 3 must be
the defining inequality.

4818. Consider C3 and C4, classifying the result by the
number of heads attained in C3:

C3 C4 Probability
0 1, 2, 3, 4 1

8 × 15
16 = 15

128

1 2, 3, 4 3
8 × 11

16 = 33
128

2 3, 4 3
8 × 5

16 = 15
128

3 4 1
8 × 1

16 = 1
128

The total probability is 1/2. This result generalises.
To prove it, consider C2k−1 and C2k. The key fact
is the symmetry of the table above and below the
central line, which occurs between k and k + 1.

C2k−1 C2k Probability
0 1, ..., 2k a0 × b0

1 2, ..., 2k a1 × b1

... ... ...
k − 1 k, ..., 2k ak × bk

k k + 1, ..., 2k ak × (1 − bk)
... ... ...

2k − 2 2k − 1, 2k a1 × (1 − b1)
2k − 1 2k a0 × (1 − b0)

Pairing the entries,

a0 × b0 + a0 × (1 − b0)
+ a1 × b1 + a1 × (1 − b1)
+ ...

+ ak × bk + ak × (1 − bk)
≡ a0 + a1 + ... + ak.

This is the sum of half (a symmetrical half) of the
probabilities of the distribution B(2k, 1/2). So, the
probability is 1/2.

4819. The equations of the normals are

y = − 1
2p (x − p) + p2,

y = − 1
2(p+2) (x − p − 2) + (p + 2)2.

These have the same y value at x = 15
2 :

− 1
2p

( 15
2 − p

)
+ p2

= − 1
2(p+2)

( 15
2 − p − 2

)
+ (p + 2)2.

Simplifying a little,
1
p

(
15 − 2p

)
= 1

p+2
(
15 − 2p − 4

)
− 16p − 16.

Multiplying by p(p + 2),

(15 − 2p)(p + 2) = p(15 − 2p − 4)
− 16p(p + 1)(p + 2).

This gives

16p3 + 48p2 + 32p + 30 = 0
=⇒ p = − 5

2 .
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4820. (a) Let y = h(x) be the original tangent at x = a.
The original equation for re-intersections is
f(x) = h(x). Because g (and the operation
of differentiation) is linear, the tangent line to
y = f(x) + g(x) at x = a is y = h(x) + g(x).
The new equation for re-intersections will be

f(x) + g(x) = h(x) + g(x)
⇐⇒ f(x) = h(x).

So, the x coordinates of the re-intersections
will be the same either way.

(b) Let g(x) = −x − 1. Transforming as in part
(a), the quartic is y = x4 − 3x2. This has even
symmetry. Hence, the tangent at x = 0 will re-
intersect the curve symmetrically at x = ±b,
but no other tangent will.

x

y

The tangent line is the x axis. Reversing the
transformation, the original tangent line was
y = x + 1.

x

y

4821. Using the cosine rule,

cos C = a2 + b2 − c2

2ab
.

This gives

sin C =
√

1 − cos2 C

=
√

1 − (a2 + b2 − c2)2

4a2b2

≡
√

4a2b2 − (a2 + b2 − c2)2

2ab
.

So, the area of the triangle is

A△ = 1
2 ab sin C

= 1
4

√
4a2b2 − (a2 + b2 − c2)2

≡ 1
4

√
−a4 − b4 − c4 + 2a2b2 + 2a2c2 + 2b2c2.

Factorising this, we get
1
4

√
(a + b + c)(−a + b + c)(a − b + c)(a + b − c).

Bringing the 1/4 into the square root, we distribute
a factor of 1/2 to each bracket. This gives

A△ =
√

s(s − a)(s − b)(s − c), as required.

4822. The quartic is stationary at x = p, q, r. So, its
derivative has roots x = p, q, r, and must therefore
be a scalar multiple of ax3 + bx2 + cx + d:

dy

dx
= kax3 + kbx2 + kcx + kd.

Integrating this,

y = 1
4 kax4 + 1

3 kbx3 + 1
2 kcx2 + 1

2 kdx + e.

The quartic is monic, so 1
4 ka = 1, giving k = 4

a .
Also, since the curve passes through the origin,
e = 0. This gives the quartic as

y = x4 + 4b
3a x3 + 2c

a x2 + 4d
a kx.

4823. We integrate by parts. Let u = x and v′ = ex cos x.
This gives u′ = 1. To find v, we need to integrate
by parts. We use the tabular integration method:

Signs Derivatives Integrals
+ ex cos x

− ex sin x

+ ex − cos x

This gives

v = ex sin x + ex cos x − v

=⇒ v = 1
2 ex(sin x + cos x).

So, the original integral is∫
xex cos x dx

= 1
2 xex(sin x + cos x) − 1

2

∫
ex(sin x + cos x) dx.

We already have the integral of ex cos x. Let

I =
∫

ex sin x dx.

Signs Derivatives Integrals
+ ex sin x

− ex − cos x

+ ex − sin x

This gives

I = −ex cos x + ex sin x − I

=⇒ I = 1
2 ex(sin x − cos x).

Putting all of this together,∫
xex cos x dx

= 1
2 xex(sin x + cos x) − 1

2

∫
ex(sin x + cos x) dx

= 1
2 xex(sin x + cos x) − 1

4 ex(sin x + cos x)
− 1

4 ex(sin x − cos x) + c

≡ 1
2 ex
(
x sin x + x cos x − sin x

)
+ c.
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4824. The relevant graphs are

x

The projectile bounces, for x > 0, where
√

3
3 x = u2

2g
− gx2

2u2

=⇒ gx2

2u2 +
√

3
3 x − u2

2g
= 0.

Taking the positive root in the quadratic formula,

x =
−

√
3

3 +
√

1
3 + 1

g
u2

≡ u2
√

3g
.

The gradient of the trajectory is
dy

dx
= − g

u2 x.

Evaluating at the point at which the projectile
bounces, the gradient of the trajectory is

m = − g

u2 × u2
√

3g

= −
√

3
3 .

So, the angle of inclination when it bounces is 30°
below horizontal. The surfaces are inclined at 30°.
And there is no loss of speed, so, when it bounces,
the path of the projectile is reflected in the normal
to the surface. So, the projectile travels vertically
upwards after bouncing. Symmetry dictates that
the next bounce puts the projectile back on its
original trajectory, and so on.

x

y

The motion is periodic, as required.

4825. Firstly, we simplify a little:

1 − 1
r2 ≡ r2 − 1

r2 ≡ (r + 1)(r − 1)
r2 .

By the chain rule,
dyn

dy1
≡ dyn

dyn−1
× dyn−1

dyn−2
× ... × dy2

dy1

= (n + 1)(n − 1)
n2 × n(n − 2)

(n − 1)2 × ... × 3 · 1
22 .

Most factors cancel, with e.g. (n − 1)2 appearing
in the numerator of the first and third factors, and
the denominator of the second. The only factors
uncancelled are at the beginning and the end:

dyn

dy1
= n + 1

n
× 1

2

≡ n + 1
2n

.

Integrating this with respect to y1,

yn = n + 1
2n

y1 + c, as required.

4826. Since went first, there are five and four in the
grid. Clearly, for a draw, the middle right must be

. Labelling the remaining boxes, we have

1 2

3 4 5

We classify by number of in the top row.
• none. In this case, 3, 4, 5 must all contain .

This makes three in a row. So, this option
contributes no grids.

• one. There are two options:
– in 1. There must be in both 2 and 4.

This leaves in 3 and 5. This contributes
one grid.

– in 2. There must be in both 1 and 3.
This leaves in 4 and 5. This contributes
one grid.

• two. There must be in both 3 and 4. This
leaves in 5. This contributes one grid.

So, there are three grids in total, as required.

4827. Consider y = x−1.8 = x− 9
5 . Since, both 9 and 5 are

odd, this is a curve akin to y = x−1 and y = x−3,
with gradients in between the two:

x

y

The curve y = 1 − x−1.8 is then

x
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The x intercept in the above graph is (1, 0); y is
negative for x ∈ (0, 1). So, the original graph has
no points over this domain. The tangent at x = 1
becomes parallel to the y axis, in the manner of
y =

√
x at the origin. Taking the square root, the

y values remain above and below the dotted line.
So, the graph is

x1

1

4828. The probability that couple A sits together is 2/5:
place A1 wlog and then see if A2 sits next door.
So, in a large number of trials, we would expect to
see, on average, couple A sitting together in 2 out
of every 5 trials. The same is true of couples B

and C. The expectation of each couple’s presence
is 2/5, so the expected number of couples present
is 3 × 2/5 = 6/5.
This can seem a little like magic. So, below is the
brute force version...

Alternative Method

The possibilities for the number of couples sitting
together are {0, 1, 2, 3}:

• 3 couples sitting together. Place A1 wlog.
The probability that A2 sits next door is 2/5.
Then put someone next to A2, call them B1.
The probability that B2 sits next to B1 is 1/3.
If the As and Bs are successful, the Cs are
guaranteed to be. So, the probability that
three couples sit together is

2
5 × 1

3 = 2
15 .

• 2 couples sitting together. There are three
choices for the couple not sitting together.
Place A1 wlog. The probability that A2 sits
opposite is 1/5. This leaves two spaces of two
seats each. Place B1 wlog. The probability
that B2 sits next door is 1/3. If they do, the
Cs are then sorted. So, the probability that
two couples sit together is

3 × 1
5 × 1

3 = 3
15 .

• 1 couple sitting together. There are three
choices for that couple. Choose the As. Place
A1 wlog. The probability that A2 sits next
door is 2/5. Place someone next to them, and
call them B1. There is only one successful
seat for B2, with probability 1/3. So, the
probability that exactly one couple sits to-
gether is

3 × 2
5 × 1

3 = 6
15 .

Hence, the expectation of the number of couples
sitting together is

3 × 2
15 + 2 × 3

15 + 1 × 6
15

= 6
5 , as required.

4829. The boundary equations, for n = 1, 2, 3 are

x
1
2 + y

1
2 = 1,

x
1
4 + y

1
4 = 1,

x
1
6 + y

1
6 = 1.

These equations are only defined in the positive
quadrant. So, the regions in question are bounded
by the axes. The region A1 is as shown below. The
other regions are broadly the same, with positive
curvature everywhere on (0, 1). The area of each
region can be bounded by finding the intersection
with y = x. In the case of n = 1, this is at (1/4, 1/4).
In general, the intersection with y = x lies at

2x
1

2n = 1
=⇒ x = 2−2n.

1

1 x

(
2−2n, 2−2n

)

So, the area An is, in each case, bounded by the
area Bn below and to the left of the line segments
shown. The area Bn is 2−2n. So, as n → ∞,
Bn → 0. And, since An is squeezed between 0 and
Bn,

lim
n→∞

An = 0.

Nota Bene

The technical name for the result invoked above is
the squeeze theorem.

4830. The leading coefficient of P1 is −1. So, before its
enlargement, P2 is a monic parabola, of the form
y = x2 + a. To enlarge by factor 1

2 , we replace x

by 2x and y by 2y. This gives a parabola of the
form 2y = (2x)2 + a, which we can rewrite as

y = 2x2 + b.

For intersections with y = −x2 + 2x,

2x2 + b = −x2 + 2x

=⇒ 3x2 − 2x + b = 0.

We need the two parabolae to be tangent. Setting
∆ = 0, we want 4 − 12b = 0, which gives the y

intercept as b = 1/3.
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4831. (a) Using the change of base formula,

logk x ≡ loge x

loge k

≡ ln x

ln k
.

So, the derivative of y = logk x is

dy

dx
= 1

x ln k
.

At x = 1, this has value 1
ln k . So, the equation

of the tangent line is

y = x − 1
ln k

.

(b) The second derivative is

dy

dx
= − 1

x2 ln k
.

For x > 0, x2 > 0. And k > 1, so ln k > 0.
Hence, the second derivative is negative for
x > 0, signifying that the curve is concave.

(c) Since the curve is concave, it is always at or
below its tangent line at x = 1. Hence, I is
bounded by the area of the region under the
tangent, for x ∈ [1, k]. This is a triangle with
base (k − 1) and height 1

ln k (k − 1). Therefore,
using A = 1

2 bh,

I <
(k − 1)2

2 ln k
, as required.

4832. (a) Differentiating implicitly,

x2 sin y + cos y = x

=⇒ 2x sin y + x2 cos y
dy

dx
− sin y

dy

dx
= 1

=⇒ dy

dx

(
x2 cos y − sin y

)
= 1 − 2x sin y

=⇒ dy

dx
= 1 − 2x sin y

x2 cos y − sin y
.

(b) For sps, 1 − 2x sin y = 0. Rearranging this to
x = 1/2 sin y, we substitute in:

1
4 sin2 y

sin y + cos y = 1
2 sin y

⇐⇒ 1
4 + sin y cos y = 1

2

⇐⇒ 4 sin y cos y = 1.

(c) Solving the above,

4 sin y cos y = 1
⇐⇒ sin 2y = 1

2

⇐⇒ 2y = π
6 , 5π

6 , ...

⇐⇒ y = π
12 , 5π

12 , ...

Each of these infinitely many y values produces
one x value via x = 1/2 sin y. Hence, there are
infinitely many sps, as required.

4833. We are given that the sum of the four scores is 12.
We are looking for the product to be 64, which is
26. So, each score Xi must be 1, 2 or 4. There is
only one combination of four of these which adds
to 12: 4 + 4 + 2 + 2. We need to find

P
(

{4, 4, 2, 2} in some order
∣∣∣ ∑Xi = 12

)
.

We classify outcomes by largest score:

Largest Others Orders
3 {3, 3, 3} 1
4 {4, 3, 1} 12
4 {4, 2, 2} 6
4 {3, 3, 2} 12
5 {5, 1, 1} 6
5 {4, 2, 1} 24
5 {3, 3, 1} 12
5 {3, 2, 2} 12
6 {2, 2, 2} 4
6 {1, 2, 3} 24

113.
So, p = 6

113 , as required.

4834. Sketch:
y

The area enclosed by the curves is twice the area
enclosed by y = x2 and y =

√
3x. These intersect

at x = 0 and x =
√

3. So, the area is

A = 2
∫ √

3

0

√
3x − x2 dx

= 2
[√

3
2 x2 − 1

3 x3
]√

3

0

= 2
(

3
√

3
2 −

√
3
)

=
√

3, as required.

4835. When writing an expression in harmonic form, the
usual method is to take the primary solutions of
both R and α. With equations R sin α = a and
R cos θ = b, these are

1 R = +
√

a2 + b2,
2 α = arctan a

b .

However, while each solution is individually valid,
these values of R (as opposed to its negative) and
α (as opposed to α + π) only provide a solution
together if a and b have the same sign. The usual
technique is to match the signs beforehand, by
choosing the correct harmonic form. To proceed
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as simply as possible, the student should choose
R sin(θ − α). Then, her working would go:

3 sin θ − 4 cos θ ≡ R sin θ cos α + R cos θ sin α

Equating coeffs, R cos α = 3 and R sin α = 4
Hence, R = 5 and α = arctan 4

3 .

This gives 5 sin
(
θ − arctan 4

3
)
.

Nota Bene

It is also possible to fix the student’s working in a
slightly more laborious fashion, by taking e.g. the
value R = 5 and substituting it back in to find
α. This is entirely valid mathematically, but isn’t
quite as slick. Harmonic form is simpler if you
choose the right form from the get go.

4836. Differentiating,

y = 4x4 − 4x3 − 7x2 + 4x + 3

=⇒ dy

dx
= 16x3 − 12x2 − 14x + 4.

Solving for sps,

16x3 − 12x2 − 14x + 4 = 0
=⇒ x = 1

4 , 1
4
(
1 ±

√
17
)
.

These are in arithmetic progression around x = 1
4 .

Checking the y coordinates, the y coordinates of
each of the outer two sps is −1. Since the sps are
symmetrical in x = 1

4 , so must the curve be.

Alternative Method

Having determined that x = 1
4 is the putative line

of symmetry, let z = x− 1
4 . Substituting x = z+ 1

4 ,
the equation of the curve is

y = 4
(
z + 1

4
)4 − 4

(
z + 1

4
)3 − 7

(
z + 1

4
)2

+ 4
(
z + 1

4
)

+ 3
≡ 1

64
(
256z4 − 544z2 + 255

)
.

Since this is a biquadratic, it must have z = 0 as a
line of symmetry. Hence, the original quartic has
x = 1

4 as a line of symmetry.

4837. Assume, for a contradiction, that there exists an
irregular pentagon, with perimeter P , which has
maximal area. Let a and b be the lengths of two
adjacent sides, where a ̸= b. The pentagon may
be partitioned into a triangle and a quadrilateral,
as follows:

X

a b
h

Move X onto the dashed perpendicular bisector,
leaving the other vertices where they are. Since
the total length a + b is fixed, this must increase
the perpendicular height h of the shaded triangle,
thus increasing its area. Hence, the new pentagon
has a greater area than the original one. This is a
contradiction. Therefore, for a fixed perimeter P ,
the pentagon of greatest area is regular.

4838. (a) For stationary points with x ∈ [−π, π],

3 cos x(3 + 2 cos x) − 3 sin x · −2 sin x = 0
=⇒ 3 cos x + 2 cos2 x + 2 sin2 x = 0
=⇒ 3 cos x = −2
=⇒ x = ± arccos

(
− 2

3
)

= ±
(
π − arccos 2

3
)

= ±π ∓ arccos 2
3 .

(b) At x = 0, the tangent line is y = 0.6x.
Since the next five derivatives are all close to
zero, the gradient deviates very little from 0.6
in a reasonably large domain around x = 0.
Hence, the curve is very well approximated by
y = 0.6x for most of the domain between the
sps in part (a).

(c) The curve is periodic, with period 2π. So,
the behaviour described in part (b) is repeated
around x = 2nπ for all n ∈ Z:

y

2π−2π

3√
5

4839. The minimal width of the rectangle is 6. It is
possible to fit the circles into a 6 × 10 rectangle.
The rectangle required is slightly smaller than this,
with area

30 + 12
√

6 ≈ 59.4.

Rotate the picture so that the two larger circles
are tangent to the x axis:

x

y

The centres form a (3, 4, 5) triangle. The dotted
triangle has a hypotenuse of 5 and ∆y = 1, so
∆x =

√
24 = 2

√
6. So, the collective x width of

the circles is 5 + 2
√

6. Hence, they will fit inside a
rectangle, sides parallel to the axes, of area(

5 + 2
√

6
)

× 6 = 30 + 12
√

6, as required.
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4840. The string is smooth, so, by symmetry, the lines
of action must lie along the angle bisectors of the
triangle of string, meeting at the incentre X:

P Q

R

X

1
2 α

1
2 α

1
2 β

1
2 β

1
2 γ1

2 γ

Angle RXQ is 180° − 1
2 β − 1

2 γ. Since the lines of
action meet at X, this is the obtuse angle between
the forces at R and Q meeting tip-to-tip. So, the
acute angle between the forces at R and Q meeting
tip-to-tail is

A = 180° − ∠RXQ

= 180° −
(
180° − 1

2 β − 1
2 γ
)

= 1
2 β + 1

2 γ.

Since 1
2 (α + β + γ) = 90°, this is

A = 90° − 1
2 α.

The other results follow by symmetry.

4841. Let Y be the integral of y. Then we can rewrite
the equation as a de, absorbing the +c into Y :

Y =

√
1 −

(
dY

dx

)2

=⇒ Y 2 = 1 −
(

dY

dx

)2

=⇒ dY

dx
= ±

√
1 − Y 2.

Separating the variables,∫ 1√
1 − Y 2

dY = ±
∫

1 dx.

The rhs is ±x + c. To integrate the lhs, let
Y = sin θ, so that dY = cos θ dθ. Enacting the
substitution, ∫ 1√

1 − Y 2
dY

=
∫ 1√

1 − sin2 θ
cos θ dθ

=
∫

1 dθ

= θ + d

= arcsin Y + d.

In the original equation, we combine the constants
of integration:

arcsin Y = ±x + k

=⇒ Y = sin(±x + k).

Differentiating, y = ± cos(±x + k). The ± signs
are made redundant by the presence of k. So, in
its simplest form, the general solution is

y = cos(x + k).

Nota Bene

This general solution could also be written

y = sin(x + k).

Had we used the substitution x = sin θ, this would
have emerged from the algebra. The solutions are
equivalent, as sin and cos waves are translations of
one another.

4842. Edge V1V2 has two endpoints, from each of which
there are two edges besides V1V2. Having chosen
V1V2 wlog, there are five edges which cannot be
chosen as V3V4. Seven edges remain in the initial
possibility space.
Any rhombus congruent to the one depicted has
midpoints on parallel edges which are diagonally
opposite each other. Of the seven edges remaining
to be chosen, only one is parallel to V1V2 and also
diagonally opposite it. So, the probability that
V3V4 is chosen successfully is 1

7 .
With V1V2 and V3V4 chosen, four vertices remain.
There are 4C2 = 6 ways of choosing two of these.
Two of these ways produce a rhombus. So, the
overall probability of ending up with a rhombus
congruent to the one depicted is

p = 1
7 × 2

6 = 1
21 .

4843. The curves are a circle, centre (0, 6), radius 4, and
a parabola. The shortest distance between them
lies along the normal to both. This is an extended
radius of the circle, and must pass through (0, 6).
The equation of a generic normal at x = p is

y − 1
4 p2 = − 2

p (x − p).

Substituting (0, 6) into this,

6 − 1
4 p2 = 2

=⇒ p = ±4.

The relevant points on the curve are (4, 4) and
(−4, 4). For both, the distance to (0, 6) is 2

√
5.

Subtracting the radius, the shortest distance is
2
√

5 − 4.

x

y
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4844. The form for the partial fractions is

1
x2(x + 1)2 ≡ A

x
+ B

x2 + C

x + 1 + D

(x + 1)2 .

Multiplying up by the denominators,

1 ≡ Ax(x + 1)2 + B(x + 1)2 + Cx2(x + 1) + Dx2.

Substituting x = 0 gives B = 1 and x = −1 gives
D = 1. Then, equating coefficients,

x3 : 0 = A + C,

x2 : 0 = 2A + 1 + C + 1.

Solving these, A = −2 and C = 2. The indefinite
integral is∫ 1

x2(x + 1)2 dx

=
∫

− 2
x

+ 1
x2 + 2

x + 1 + 1
(x + 1)2 dx

= −2 ln |x| − x−1 + 2 ln |x + 1| − (x + 1)−1 + c

≡ 2 ln
∣∣∣∣x + 1

x

∣∣∣∣− x−1 − (x + 1)−1 + c.

So, the limit is

lim
L→∞

[
2 ln

∣∣∣∣x + 1
x

∣∣∣∣− x−1 − (x + 1)−1

]L

1
2

.

Evaluating at L, and then taking the limit L → ∞,
yields zero, because the input of the ln function
tends to 1 and both other terms tend to zero. So,
the value of the entire integral is

−

(
2 ln

∣∣∣∣ 1
2 + 1

1
2

∣∣∣∣−
( 1

2
)−1 −

( 1
2 + 1

)−1
)

= −
(
2 ln 3 − 2 − 2

3
)

= 8
3 − 2 ln 3.

4845. Firstly, consider y = gh(x) = 2x3 − 6x + 1. This is
a cubic with three distinct x intercepts, as can be
seen from locating sps:

6x2 − 6 = 0
=⇒ x = ±1.

The sps are (−1, 5), (1, −3). The y coordinates
are positive and negative, so the cubic has three
distinct x intercepts, which are single roots.
Applying f to y = gh(x), each of the factors is
squared. So, the curve is now a sextic with three
double roots. Each of these is a stationary point on
the x axis. In between these roots, there must be
two sps which are not on the x axis. And, since a
sextic can never have more than five sps, we know
we have found the full complement. So, y = fgh(x)
has five sps, three of which lie on the x axis.

4846. The pegs are smooth, so the tension is the same
throughout. Hence, the resultant force applied by
the string at A acts along the angle bisector at A.
Let θ be half the angle at A. Using the cosine rule,

cos 2θ = b2 + c2 − a2

2bc

The resultant force exerted by the string is
2T cos θ. Using a double-angle formula

2 cos2 θ − 1 = b2 + c2 − a2

2bc

=⇒ 2 cos2 θ = b2 + c2 − a2

2bc
+ 1

≡ b2 + 2bc + c2 − a2

2bc

≡ (b + c)2 − a2

2bc
.

The triangle is acute, so we can take the positive
square root. This gives

cos θ =
√

(b + c)2 − a2

4bc
.

So, the force exerted at A is

FA =
√

(b + c)2 − a2

4bc
· 2T

≡
√

(b + c)2 − a2

bc
T, as required.

4847. (a) The relevant region is

L(a)

1 a x

y

(b) Consider the area between x = b and x = ab:

1 a b ab x

y

The solid shaded region can be transformed to
the hatched region by

1 a stretch factor b in the x direction,
2 a stretch factor 1

b in the y direction.
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To prove this, consider the point (p, 1/p). It is
transformed first to (bp, 1/p), then to (bp, 1/bp),
hence remaining on the curve y = 1/x. That
the endpoints match can be easily verified.
Under the action of these two stretches, the
area is unchanged. Equating the areas,

L(ab) − L(b) = L(a)
=⇒ L(a) + L(b) = L(ab), as required.

4848. Differentiating y = ux,
dy

dx
= du

dx
x + u.

Enacting the substitution,

du

dx
x + u = u2x2 − ux2

x2

=⇒ du

dx
x = u2 − 2u.

Separating the variables,∫ 1
u(u − 2) du =

∫ 1
x

dx

=⇒ 1
2

∫ 1
u − 2 − 1

u
du = ln |x|

=⇒ ln
∣∣∣∣u − 2

u

∣∣∣∣ = 2 ln |x| + c

=⇒ ln
∣∣∣∣u − 2

u

∣∣∣∣ = ln(x2) + c

=⇒ u − 2
u

= Ax2.

This gives
y
x − 2

y
x

= Ax2

=⇒ y − 2x = Ax2y

=⇒ y(1 − Ax2) = 2x

=⇒ y = 2x

1 − Ax2 .

4849. The index 5.5 is 11/2. The numerator is odd, which
maintains signs. The denominator is even, so the
curve has no points where cos x < 0.
In raising to the power 5.5, the x intercepts of
y = cos x are flattened greatly, as they are changed
from single roots to 5.5-tuple roots. So, we have an
interrupted oscillation between y = 0 and y = 1,
with flat turning points at y = 0 and tight turning
points at y = 1. This is shown below; the x axis is
dotted to bring out the behaviour.

y
1

xπ
2

3π
2

5π
2

7π
2

4850. The regions containing A and B must be shaded.
So, with probability 1

4 , we start with

A B

From here, there are 26 = 64 outcomes. Classify
the successful ones by number n of shaded regions.
Clearly n = 0, 1, 2 are unsuccessful.

3 There are 2 successful outcomes: three across
the top or three across the bottom.

4 There are two options:
– the top row or bottom row forms a path,

with one extra, giving 6 outcomes,
– four are shaded as in the example in the

question, giving 2 outcomes.
5 All 6 outcomes are successful.
6 The 1 outcome is successful.

Adding these up, the total number of successful
outcomes is 2 + (6 + 2) + 6 + 1 = 17. This gives
the probability as

p = 1
4 × 17

64 = 17
256 , as required.

4851. The mass is 1, so the force gives the acceleration
directly. The acceleration is 1 ms−2 for 1 second,
then 2 ms−2 for 1 second, and so on, until it is n

ms−2 for 1 second. Thereafter, the object moves
at constant velocity.

(a) The total change in velocity is

∆v = 1 + 2 + 3 + ... + n = 1
2 n(n + 1).

After t = n, there is no change in velocity. So,
at t = 2n, the velocity is 1

2 n(n + 1) ms−1.
(b) The displacement is given by the area under a

velocity-time graph. The velocity is
1
2 · 1 · (1 + 1) = 1 for 1 second,
1
2 · 2 · (2 + 1) = 3 for 1 second,
1
2 · 3 · (3 + 1) = 6 for 1 second,

...
1
2 (n − 1)n for 1 second,
1
2 n(n + 1) for n + 1 seconds.

For t ∈ [0, n), the relevant sum is

1 + 3 + 6 + ... + 1
2 n(n + 1)

≡
n∑

r=1

1
2 r(r + 1)

≡ 1
2

n∑
r=1

r2 + 1
2

n∑
r=1

r

≡ 1
12 n(n + 1)(2n + 1) + 1

4 n(n + 1)
≡ 1

6 n(n + 1)(n + 2).
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After this, the object moves at 1
2 n(n + 1) for

n seconds, travelling a distance of 1
2 n2(n + 1).

So, the total displacement at t = 2n is

s = 1
6 n(n + 1)(n + 2) + 1

2 n2(n + 1)
≡ 1

3 n(n + 1)(2n + 1) m.

4852. There is a common factor of (x−1) in the top and
bottom, which needs to come out before we can
take the limit:

lim
x→1

xn − 1
xn − x

= lim
x→1

(x − 1)(xn−1 + xn−2 + ... + x + 1)
(x − 1)(xn−1 + xn−2 + ... + x)

= lim
x→1

xn−1 + xn−2 + ... + x + 1
xn−1 + xn−2 + ... + x

.

At this point, we can take the limit. Each term
in the numerator and denominator tends to 1.
Counting up the number of terms in each case,

lim
x→1

xn − 1
xn − x

≡ n

n − 1 .

4853. The domain of the arcsin function is [−1, 1]. It
has odd symmetry, so we need address only [0, 1].
Consider the indefinite integral as an area function
up to x:

x

y

π
2

1

The integral of arcsin is the solid shaded area. We
can express this as the rectangle minus the hatched
area. This is∫ x

0
arcsin s ds = x arcsin x −

∫ y

0
sin t dt.

When we integrate, the constant in the y integral
can be absorbed into a generic +c:∫

arcsin x dx = x arcsin x + cos y + c

= x arcsin x +
√

1 − sin2 y + c

= x arcsin x +
√

1 − x2 + c.

Nota Bene

This result can also be shown using algebraically
using integration by parts.

4854. We require a and a + 2 both to be prime. So, the
number a + 1 between the primes must be even.
Consider whether a + 1 is also a multiple of 3:

1 If a + 1 is not a multiple of three, then one
of a or a + 2 is. But they are prime. So, one
must be 3 itself. Since 1 is not prime, this
gives the first twin prime pair (3, 5).

2 If a + 1 is a multiple of three, then, since it is
even, it is a multiple of 6 and can be written
6k, for k ∈ N. The sum of the twin primes is

(6k − 1) + (6k + 1)
≡ 12k.

This is divisible by 12.
Quod erat demonstrandum.

4855. There are three cases to consider, each of which
produces different algebra:

1 Suppose the circles are tangent to the same
two sides of the square. This scenario is

In this case, the radii are related by
√

2r + r + R =
√

2R

=⇒ r =
√

2 − 1√
2 + 1

R

≡ (3 − 2
√

2)R.

2 Suppose, alternatively, that the circles are
tangent to opposing pairs of sides. This is

In this case, the radii are related by

(
√

2 + 1)r + (
√

2 + 1)R =
√

2

=⇒ r =
√

2√
2 + 1

− R

≡ 2 −
√

2 − R.
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3 Suppose, alternatively, that the circles have
one common side as a tangent. This is

In this case, the radii are related by

R +
√

(R + r)2 − (R − r)2 + r = 1
=⇒ R + 2

√
Rr + r = 1

=⇒
(√

R +
√

r
)2 = 1.

Taking the positive square root,
√

r = 1 −
√

R

=⇒ r =
(
1 −

√
R
)2

.

So, as required, one of the following holds:

r =



(
3 − 2

√
2
)
R,

2 − 2R

1 +
√

2
,

(
1 −

√
R
)2

.

4856. Differentiating E(x),

E(x) = 1 + x + x2

2! + x3

3! + ...

=⇒ E′(x) = 0 + 1 + 2x

2! + 3x2

3! + 3x2

3! + ...

≡ 1 + x + x2

2! + x3

3! + ...

= E(x).

Let y = E(x). Then, the above is dy
dx = y. This is

a separable de. Separating the variables,∫ 1
y

dy =
∫

1 dx

=⇒ ln |y| = x + c

∴ y = Aex, for some constant A.

Substituting x = 0, we get E(x) = y = 1, so A = 1.
Hence, y = E(x) = ex, proving (on the assumption
of convergence) the following series expansion:

ex ≡ 1 + x + x2

2! + x3

3! + ...

4857. Substituting the parametric equations in, the lhs
of the equation of the ellipse is

8 sin2 2t + 4 sin2 t

≡ 32 sin2 t cos2 t + 4 sin2 t

≡ 32 sin2 t(1 − sin2 t) + 4 sin2 t

≡ 36 sin2 t − 32 sin4 t.

We need to show that this can exceed 9 in value.
Looking for a maximum,

72 sin t cos t − 128 sin3 t cos t = 0
=⇒ cos t(9 − 16 sin2 t) = 0.

Setting aside cos t = 0, we have

sin2 t = 9
16 .

So, consider the point at t = arcsin 3
4 . At this

point, the coordinates are( 3
√

7
8 , 3

4
)
.

Evaluating at this point,

8x2 + 4y2
∣∣∣(

3
√

7
8 , 3

4

) = 81
8 > 9.

So, this point and therefore part of the curve lies
outside the ellipse 8x2 + 4y2 = 9.

4858. Let the sequences be

{un} = {a, a + d, a + 2d, ...}
{vn} = {a, ar, ar2, ...}

We are told that the third terms are equal, so that

a + 2d = ar2.

Also, the second terms differ by one, so that

a + d − ar = ±1.

Substituting for d,

a + 2(±1 + ar − a) = ar2

=⇒ ± 2 + 2ar − a = ar2

=⇒ ± 2
a = r2 − 2r + 1
≡ (r − 1)2

Since r ∈ Z, (r − 1)2 ∈ Z. So, 2
a ∈ Z. And a is

also an integer. The only possibilities are therefore
a = 1, 2. The former gives r − 1 = ±

√
2, which is

not an integer. So, a = 2 is the only possibility.
With a = 2, r − 1 = ±1, so r = 0, 2. This gives
two possibilities:

{un} {2, 1, 0, ...} {2, 5, 8, ...}
{vn} {2, 0, 0, ...} {2, 4, 8, ...}
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4859. Let points X and Y have position vectors

#    „

OX = λ1a + λ2b
λ1 + λ2

,

#    „

OY = λ3c + λ4d
λ3 + λ4

.

According to the assumed result, we know that X

lies on AB and Y lies on CD.

A B

C

D

X

Y

P

We can now define point P by
#    „

OP = λ1a + λ2b + λ3c + λ4d

= (λ1 + λ2) #    „

OX + (λ3 + λ4) #    „

OY .

This tells us that P lies on the chord XY . Since
ABCD is convex, XY lies within it. So, point P

lies within the quadrilateral ABCD.

4860. Rearranging y = arctan(cos x) gives tan y = cos x.

Differentiating implicitly, then using the second
Pythagorean identity,

sec2 y
dy

dx
= − sin x

=⇒ (1 + tan2 y) dy

dx
= − sin x.

Substituting tan y = cos x,

(1 + cos2 x) dy

dx
= − sin x

=⇒ dy

dx
= − sin x

1 + cos2 x
, as required.

4861. (a) In a triangular cross-section, the greatest side
length is

√
2. The following is maximal:

The area is
√

3
2 ≈ 0.87.

(b) With a quadrilateral, we can’t make all sides√
2. So, the greatest area isn’t the symmetrical

square. A rectangle is maximal:

The area is
√

2 ≈ 1.4.

(c) Symmetry dictates that the hexagonal cross-
section of greatest area must be regular. In
this hexagon, every side joins two adjacent
midpoints, with length

√
2/2.

The area of this hexagon is 3
√

3
4 ≈ 1.3

Nota Bene

In a way, it is surprising that the cross-section with
greatest area is not the symmetrical hexagon, but
is rather the asymmetrical rectangle. However,
it is less surprising when one considers that the
rectangle and the cube share angles, whereas the
hexagon and the cube do not.

4862. (a) 1 ⇐= 2 . If the range of f ′′ is R, then f ′′ is
a polynomial of odd degree. (A polynomial of
even degree has a global min or max.)
Integrating twice, f is then also a polynomial
of odd degree, so has range R. Hence, if the
range of f ′′ is R, then the range of f is R. qed.

(b) Consider f(x) = x. This is a linear polynomial
of odd degree (1), with range R. Its second
derivative is f ′′(x) = 0, which has range {0}.
This is a counterexample to the forwards and
therefore the two-way implication.

4863. Dividing top and bottom by x2 and letting x → ∞,
the equation of the horizontal asymptote is y = 2.
So, the centre of the circle is (0, 2).
The gradient of the curve is

dy

dx
= 4x(x2 + 1) − 2x2(2x)(

x2 + 1
)2

≡ 4x(
x2 + 1

)2 .

So, the equation of the normal at x = a is

y − 2a2

a2 + 1 = −
(
a2 + 1

)2

4a
(x − a).

We need this to pass through (0, 2). Subbing in,

2 − 2a2

a2 + 1 = −
(
a2 + 1

)2

4a
(−a)

=⇒ 2
a2 + 1 =

(
a2 + 1

)2

4
=⇒ 8 = (a2 + 1)3

=⇒ a2 + 1 = 2
=⇒ a = ±1.

This gives the points of tangency as (±1, 1), so the
radius of the circle is r =

√
2.
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4864. We can rewrite the integrand as

a2 + x2

b2 + x2 ≡ 1 + a2 − b2

b2 + x2 .

Let x = b tan θ, so that dx = b sec2 θ dθ. This gives
the indefinite integral as∫

1 + a2 − b2

b2 + x2 dx

=
∫ (

1 + a2 − b2

b2 + b2 tan2 θ

)
b sec2 θ dθ

=
∫

b sec2 θ + a2 − b2

b
dθ

= b tan θ +
(
a2 − b2)θ

b
+ c

= x +
(
a2 − b2) arctan x

b

b
+ c.

So, the definite integral from x = 0 to x = b is

b +
(
a2 − b2) arctan 1

b
− (0 + 0)

≡ b +
π
(
a2 − b2)

4b
, as required.

4865. For small angles in radians, y = cos x is close to
(0, 1). So, the circular arc in question must be the
unit circle centred on the origin. Its upper half has
equation

yarc =
(
1 − x2)− 1

2 .

We expand binomially. Since x is small, we ignore
terms in x4 and above. This gives

yarc = 1 −
(
− 1

2
)(

−x2)+ ...

≡ 1 − 1
2 x2 + ...

This is precisely the small-angle approximation for
cos x. Hence, y = cos x is well approximated, for
small angles in radians, by an arc of the unit circle.

Alternative Method

We compare values of the zeroth, first and second
derivatives, evaluated at the origin. Let

C(x) =
(
1 − x2)− 1

2 .

The derivatives are

C′(x) = −x
(
1 − x2)− 1

2 ,

C′′(x) = −
(
1 − x2)− 3

2 .

Evaluating the functions and their derivatives,

cos(0) = 1 C(0) = (1 − 02) = 1
− sin(0) = 0 C′(0) = −0(1 − 02)− 1

2 = 0
− cos(0) = −1 C′′(0) = −(1 − 02)− 3

2 = −1.

The functions match up to the second derivative,
so, in the vicinity of x = 0, cos(x) ≈ C(x).

4866. The nine points form a regular nonagon. At the
centre of the circle, one edge subtends 40° and has
length 2 sin 20°. Each chord, which covers four
edges, subtends 160° and has length 2 sin 80°. So,
the shaded triangle has side length

2 sin 80° − 4 sin 20°
= 2 cos 10° − 8 sin 10° cos 10°
= 2 cos 10°(1 − 4 sin 10°), as required.

4867. Cross-section:

y

x−r r

The circle has equation y2 = r2 − x2. So, the
shaded strip shown can be seen as the cross-section
of (approximately) a disc of area y2 = π

(
r2 − x2).

Hence, the volume of the sphere is the sum of all
such discs, taken in the limit as the discs become
infinitely thin. This is a definite integral:

Vsphere =
∫ r

−r

π
(
r2 − x2) dx

≡
[
r2x + 1

3 r3
]r

−r

≡
( 2

3 πr3)−
(
− 2

3 πr3)
≡ 4

3 πr3, as required.

4868. (a) If the pulley does not accelerate, then it acts
like a fixed pulley. The force diagrams are

m1a

m1g

T

am2

m2g

T

The equation of motion along the string is

m2g − m1g = (m1 + m2)a

=⇒ a = (m2 − m1)g
m1 + m2

.

(b) If the pulley accelerates upwards at 1
2 g, then

the accelerations of the bobs now depend on
both a (acceleration of the string around the
pulley), and the 1

2 g acceleration of the pulley:

m1a + 1
2 g

m1g

T

a − 1
2 gm2

m2g

T
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We can no longer take Nii for the system as a
whole, as the individual accelerations are now
different. The equations of motion are

T − m1g = m1(a + 1
2 g),

m2g − T = m2(a − 1
2 g).

Adding these,

(m2 − m1)g = (m1 + m2)a + 1
2 (m1 − m2)g

=⇒
( 3

2 m2 − 3
2 m1

)
g = (m1 + m2)a

=⇒ a = 3(m2 − m1)g
2(m1 + m2) .

4869. (a) The squared distance |F1P |2 is given by(
a cos t +

√
a2 − b2

)2
+ b2 sin2 t

≡ a2 cos2 t + 2a cos t
√

a2 − b2 + a2 − b2

+ b2 sin2 t

≡ a2 + 2a cos t
√

a2 − b2 +
(
a2 − b2) cos2 t

≡
(

a + cos t
√

a2 − b2
)2

.

So, the distance is

|F1P | = a + cos t
√

a2 − b2.

(b) Following the same argument, |F2P |2 is(
a cos t −

√
a2 − b2

)2
+ b2 sin2 t

≡ (a − cos t
√

a2 − b2)2.

So, the distance is

|F1P | = a − cos t
√

a2 − b2.

(c) Adding the distances,

|F1P | + |F2P |

=
(

a + cos t
√

a2 − b2
)

+
(

a − cos t
√

a2 − b2
)

= 2a.

This is independent of t, as required.

Nota Bene

The above result is what allows one of the two
standard methods of drawing an ellipse, which is
as follows:

1 cut a piece of string (to length |F1P |+|F2P |),
2 attach its two ends to two points (the foci),
3 using a pencil to keep the string taut, draw

around the two foci.
The other method uses a pair of compasses and a
cylindrical tin. The proof is a bit heavier!

4870. Consider a network with n users. Assume, for a
contradiction, that no two users have the same
number of connections. The smallest possible
number of connections is 0 and the greatest is n−1.
So, there are n possible numbers of connections:

{0, 1, 2, ..., n − 1︸ ︷︷ ︸
n numbers

}.

There are n users. Since no two have the same
number of connections, there must be exactly one
user with 0 connections, one with 1, and so on.
Consider user A, who has 0 connections, and user
B, who has n − 1 connections. A isn’t connected
to anybody; B is connected to everybody, which
includes A. This is a contradiction. So, two users
must have the same number of connections.

4871. Since |sin x| and |sin y| are periodic, period π, we
need only consider the square domain [0, π]×[0, π].
On this domain, sin x and sin y are both non-
negative, so the equation is sin x = sin y. This
is satisfied if y = x or if y = π − x. These are
straight lines:

π

π

This pattern repeats periodically in both x and y.
So, the entire plane is tiled with squares:

x

y

π

π

The squares have side length
√

2
2 π, so area 1

2 π2.

4872. (a) For sps,

−3εx2 + 2x = 0
=⇒ x(−3εx + 2) = 0
=⇒ x = 0, 2

3ε .

Substituting these values back in, x = 0 gives
y = 1 and x = 2

3ε gives

y = −ε
( 2

3ε

)3 +
( 2

3ε

)2 + 1
=≡ − 8

27ε2 + 4
9ε2 + 1

≡ 4
27ε2 + 1.

So, there are two sps, whose coordinates are

(0, 1) and
( 2

3ε , 4
27ε2 + 1

)
.
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(b) Consider the equation

−εx3 + x2 + 1 = 0.

This is a cubic, and must have at least one real
root. When x is large, comparable in size to
1/ε, the constant term is negligible compared
to the other two terms. In this regime,

−εx3 + x2 = 0
=⇒ x2(−εx + 1) = 0.

We reject x = 0, which doesn’t correspond to
the large-x regime. This leaves −εx + 1 = 0,
which is x = 1/ε. This is in the large-x regime,
so is an approximate root. And there can be no
further roots, since the y coordinates of both
sps are positive. So, the cubic has exactly one
root, at x ≈ 1/ε.

4873. The rate of change of angle, on the first positive
edge, is least at θ = 0, 60°, and greatest at the
midpoint θ = 30°. To find the rate of change of θ,
we look at two elements:

• velocity perpendicular to OF ,
• the distance |OF |.

Let the speed be 1. At the midpoint of an edge,
the perpendicular component is of speed is 1. Just
before a vertex, it is

√
3/2. The ratio of these is

1 :
√

3
2 .

Let the distance from the centre to the midpoint
be 1. At the midpoint, |OF | = 1. At the vertex,
|OF | = 2/

√
3. The ratio of these is

1 : 2√
3 .

To combine these, consider the formula l = rθ, in
which l is arc length. Differentiated with respect
to t, this is vperp = rω, which is

ω = vperp

r
.

So, the ratio of angular speeds is

1 :
√

3
2 ÷ 2√

3 .

This simplifies to 4 : 3, as required.

4874. Let u = x2 and v′ = xex2 , so that u′ = 2x and,
integrating by inspection, v = 1

2 ex2
. This gives∫

x3ex2
dx

= 1
2 x2ex2

−
∫

xex2
dx

= 1
2 x2ex2

− 1
2 ex2

+ c

= 1
2 ex2

(x2 − 1) + c.

4875. The centre moves with parametric equations

x = 2 sin 2t,

y = 2 sin t.

These define a Lissajous curve. The set of (x, y)
points through which the curve passes consists of
all points within 1 unit distance of this curve:

x

y

4876. Consider prime factors:

• The product must contain three consecutive
even numbers, of which one is a multiple of
four. So, the product must be divisible by 24,
but can’t be guaranteed to be divisible by 25.

• The product must contain two consecutive
multiples of three. So, it must be divisible
by 32, but isn’t necessarily divisible by 33.

• One multiple of five can be guaranteed. The
product must be divisible by 5.

• One multiple of seven can be guaranteed. The
product must be divisible by 7.

• No multiples of other, higher primes can be
guaranteed to be present.

So, there is always a factor of

24 × 32 × 5 × 7.

We can therefore guarantee divisibility by

2a × 3b × 5c × 7d,

where the indices can be chosen, independently of
one another, from

a ∈ {0, 1, 2, 3, 4},

b ∈ {0, 1, 2},

c ∈ {0, 1},

d ∈ {0, 1}.

Hence, the number of elements in K is

|K| = 5 × 3 × 2 × 2
= 60, as required.



w
w

w
.g

il
es

ha
yt

er
.c

om
/f

iv
et

ho
us

an
dq

ue
st

io
ns

.a
sp

fe
ed

ba
ck

:
gi

le
s.

ha
yt

er
@

w
es

tm
in

st
er

.o
rg

.u
k

v1
w

w
w

.gileshayter.com
/fivethousandquestions.asp

feedback:
giles.hayter@

w
estm

inster.org.uk

v1

4877. Let y = ga(x) be the equation of the tangent at
x = a. The equation for intersections with the
curve is

x3 + 3x2 − 5 − ga(x) = 0.

This is a cubic equation. We know, due to the
point of tangency at x = a, that this equation has
a repeated root at x = a, so a repeated factor of
(x − a). This factor could have multiplicity two,
as in (x − a)2 or three, as in (x − a)3:

• If it has multiplicity two, then, taking out this
quadratic factor leaves a linear factor, which
corresponds to a distinct root. This is a point
of re-intersection.

• If it has multiplicity three, then there can be
no other points of intersection. This can only
occur where, in the case of a cubic, the second
derivative is zero∗. This is at x = 1.

Nota Bene

To justify further the fact marked ∗, you can use
contradiction. Assume that the second derivative
is non-zero. Then, since the curvature is e.g. +ve
in a small neighbourhood around x = a, the curve
must remain e.g. above the tangent. This signifies
a double, as opposed to triple root.

4878. In the vicinity of O, x and y are both small. In
the limit, the rhs, being a cube, is negligible. So,
the tangent at the origin is ax + by = 0. Solving
for intersections of this tangent with the curve,
0 = (bx − ay)3. Since this has a triple root at O,
the tangent must cross the curve. This signifies
that the curve is inflected at the origin.

x

y

Nota Bene

The curve is a rotation of y = x3.

4879. For fixed points,
2k+1∑
r=1

xr = x.

Writing this longhand,

x + x2 + x3 + ... + x2k+1 = x

=⇒ x2 + x3 + ... + x2k+1 = 0
=⇒ x2(1 + x + ... + x2k−1) = 0.

So, x = 0 is a fixed point. The other option is

1 + x + ... + x2k−1 = 0.

This has a root at x = −1. Taking out the relevant
factor,

(
1 + x

)(
1 + x2 + x4 + ... + x2k−2) = 0.

This leaves

1 + x2 + x4 + ... + x2k−2 = 0.

Every term in x has even degree, so the lhs is
greater than or equal to 1. Hence, this equation
has no real roots. The iteration I, therefore, has
two fixed points, x = 0 and x = −1.

4880. (a) Drawing in the radii etc., the scenario is

The line of centres has gradient −
√

3. Hence,
the gradient of the common tangent is 1/

√
3.

So, at release, a small horizontal displacement
δx in the half-cylinder will allow the cylinder
to fall δx/

√
3. In the instantaneous limit, the

ratio of displacements is 1 :
√

3, so the ratio of
accelerations is also 1 :

√
3.

(b) The cross-sectional areas are in the ratio 2 : 9,
so let the masses be 2 kg and 9 kg. The force
diagrams are

P

9g

R

√
3a

Q

2g

R

a

Resolving in the directions of the accelerations,

2g − R cos 30° = 2a

R sin 30° = 9
√

3a.

Solving these, a = 2
29 g ms−2.
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4881. (a) A quarter-circle centred on O with radius r has
equation y =

√
r2 − x2, where x takes values

between 0 and r. Differentiating this,

dy

dx
= − x√

r2 − x2
.

So, using the arc length formula,

C = 4
∫ r

0

√
1 + x2

r2 − x2 dx

= 4
∫ r

0

√
r2

r2 − x2 dx

= 4r

∫ r

0

1√
r2 − x2

dx.

(b) Let x = r sin θ, so that dx = r cos θ dθ. The
new limits are θ = 0 to θ = π

2 . Enacting the
substitution,

C = 4r

∫ π
2

0

1√
r2 − r2 sin2 θ

· r cos θ dθ

= 4r

∫ π
2

0
1 dθ

= 4r
[
θ
]π

2

0

≡ 2πr, as required.

4882. The red counters have ended up in a group. So,
the possibility space consists of the orders of

{[rrr], b, b, b, g, g, g}.

There are 7!
3!3! = 140 orders of this. In successful

outcomes, the blue counters also form a group:

{[rrr], [bbb], g, g, g}.

There are 5!
3! = 20 ways of ordering this. So, the

probability is 20
140 = 1

7 .

Alternative Method

Place the [rrr] group. We can place the first blue
counter to the right, wlog: rrrb. Place the next
two blue counters. Given that the [rrr] counters
are a fixed block, the probability of ending up with
rrrbbb is

2
3 × 3

4 .

We now place the greens, noting that the [rrr]
group is inviolate, but the [bbb] group is not.
There are five possible locations for the first g,
of which three are successful. Continuing in this
vein, the probability that the greens don’t break
up the blue group is

3
5 × 4

6 × 5
7 .

So, the overall probability is
2
3 × 3

4 × 3
5 × 4

6 × 5
7 = 1

7 .

4883. (a) i. The term (x2 + y)2 is non-negative, so
y2 ≤ 1. This gives |y| ≤ 1.

ii. Assume, for a contradiction, that |x| > 2.
Then x2 > 4, which means x2 + y > 3, so
(x2 +y)2 > 9. Since y2 is non-negative, this
is not possible.

(b) Differentiating implicitly,

2(x2 + y)
(
2x + dy

dx

)
+ 2y dy

dx = 0.

Setting dy
dx = 0,

2(x2 + y)(2x) = 0
=⇒ x = 0 or (x2 + y) = 0.

The former gives sps at (0, ±
√

2/2). Subbing
the latter into the curve equation, y2 = 1, so
there are sps at (1, ±1).

(c) The curve is a loop around the origin, as shown
in part (a). It is symmetrical in the y axis.
The x intercepts are ±1 and the y intercepts
are ±

√
2/2. With the sps from (b), this gives

x

√
2

2

−
√

2
2 (1, −1)(−1, −1)

4884. (a) Let the speed of the wheel be 1 unit/s. The
coordinates of the centre C are then (t, 1).
The radial vector rotates clockwise at 1 rad/s,
starting at −j. In terms of time t, this is

#   „

CP =
(

− sin t

− cos t

)
.

So, the position vector of P is
#    „

OP = #    „

OC + #   „

CP

=
(

t

1

)
+
(

− sin t

− cos t

)
≡
(

t − sin t

1 − cos t

)
.

(b) Using the parametric integration formula,

A =
∫ 2π

0
y

dx

dt
dt

=
∫ 2π

0
(1 − cos t)2 dt

=
∫ 2π

0

1
2 cos 2t − 2 cos t + 3

2 dt

=
[

1
4 sin 2t − 2 sin t + 3

2 t
]2π

0

= 3π.

The wheel itself has area π. So, during one
revolution, the area underneath the cycloid is
three times the area of the wheel. qed.
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4885. First, we sketch y = f(x). The graph has two sps
at approximately (−0.814, 1.46) and (3.48, −77.8).
So, the roots x = a and x = b are close together,
one greater than and one less than x = −0.814.
The curve is a positive cubic. The equation of the
tangent at x = 3 is y = −11x−42. This intercepts
the x axis at x = − 42

11 ≈ −3.8

x

y
−3.8 k ≈ 3.48

There are three behaviours for x0 ≥ 3:
1 For x0 ∈ [3, k), the tangent is shallower than

that at x = 3. So, x1 < −3.8. After this, the
iteration must converge to x = a.

2 For x0 = k, f ′(x) = 0: x1 is undefined.
3 For x0 ∈ (k, ∞), the gradient is positive, and

x1 will be to the right of the root c. After
this, the iteration must converge to x = c.

So, for no starting value x0 ≥ 3 will the iteration
converge to the root x = b.

4886. The left-hand bracket is

tan x + cot x

≡ sin x

cos x
+ cos x

sin x

≡ sin2 x + cos2 x

sin x cos x

≡ 1
sin x cos x

.

So, the lhs is

sin x + cos x

sin x cos x

≡ 1
cos x

+ 1
sin x

≡ sec x + cosec x, as required.

4887. The sum of the first npq integers is

S1 = 1
2 npq(npq + 1).

Of these, there are
1 nq integers divisible by p, with sum

Sp = 1
2 npq(nq + 1).

2 np integers divisible by q, with sum

Sq = 1
2 npq(np + 1).

3 n integers divisible by p and q, with sum

Spq = 1
2 npq(n + 1).

S is given by S1 − Sp − Sq + Spq. Each term has a
common factor of 1

2 npq. Taking this out,

S = 1
2 npq

(
npq + 1 − (nq + 1) − (np + 1) + n + 1

)
≡ 1

2 npq
(
npq − nq − np + n

)
≡ 1

2 n2pq
(
pq − q − p + 1

)
≡ 1

2 n2pq(p − 1)(q − 1), as required.

4888. The trig ratios are sin θ = 12
13 and cos θ = 5

13 .

(a) The force diagram for the left-hand card is

R1

R2

W

F

Call the length 2. Taking moments around the
base,

W × cos θ = R2 × 2 sin θ

=⇒ R2 = 1
2 W cot θ

= 5
24 W.

(b) With a force exerted on one card, there is no
longer symmetry. Hence, friction acts between
the cards. The force diagrams are

R1

R3

W

1
2 W

F1

F3

R2

R3

F3

W

F2

The surface is high friction, so F1 and F2 can
be arbitrarily large. Slipping can only occur at
the apex. Assuming limiting friction at that
point, F3 = µR3. Taking moments around the
base of the left-hand card,

W (cos θ + 1
2 sin θ) = 2R3 sin θ + 2µR3 cos θ

∴ 11W = (24 + 10µ)R3.

Around the base of the right-hand card,

W cos θ + 2µR3 cos θ = 2R3 sin θ

∴ 5W = (24 − 10µ)R3.

Solving simultaneously,
5W

24 − 10µ
= 11W

24 + 10µ

∴ 5(24 + 10µ) = 11(24 − 10µ)
=⇒ µ = 9

10 .

So, for equilibrium, µ ≥ 9
10 , as required.
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4889. Let an = arn−1 and bn = bsn−1. We are told that
an + bn is also geometric. Equating ratios,

ar2 + bs2

ar + bs
= ar + bs

a + b

=⇒
(
ar2 + bs2) (a + b) = (ar + bs)2

=⇒ a2r2 + abr2 + abs2 + b2s2

= a2r2 + 2abrs + b2s2

=⇒ abr2 − 2abrs + abs2 = 0
=⇒ ab(r − s)2.

We are told that no term is zero. Hence, since a

and b are non-zero, r − s = 0, and the common
ratios of an and bn are the same.

4890. Let A start.

P(A hits gold) = p,

P(A fails to score) = 1 − p − q,

P(B hits gold) = pq,

P(B fails to score) = q(1 − p − q).

If none of the above occur, then the competition
starts again. So, consider the round in which the
competition is decided:

P(A wins | a result) = p + q(1 − p − q)
1 − q2 ,

P(B wins | a result) = pq + (1 − p − q)
1 − q2 .

Equating these, we require

p + q(1 − p − q) = pq + (1 − p − q)
=⇒ p + q − pq − q2 = pq + 1 − p − q

=⇒ q2 + 2pq − 2p − 2q + 1 = 0
=⇒ (q − 1)(q + 2p − 1) = 0
=⇒ q = 1 or q = 1 − 2p.

If q = 1, then the competition will never end. So,
we require q = 1 − 2p.

4891. The equation of a generic normal is

y − a2 = − 1
2a (x − a).

The y intercept of this normal is a2 + 1/2. Hence,
in terms of a, the area of the region is given by
the area of a trapezium minus the area under the
curve:

A = 1
2 a
(
a2 + (a2 + 1/2)

)
−
∫ a

0
x2 dx

≡ a3 + 1
4 a − 1

3 a3

≡ 2
3 a3 + 1

4 a.

Setting this to 1.452, we solve to find a = 1.2.

4892. Rename x as m.
The terms on the lhs are arctan m, which is the
angle of inclination of y = mx, and arctan 1/m,
which is the angle of inclination of y = 1

m x. These
lines have reciprocal gradients, so are reflections of
one another in the line y = x, at inclination π/4.
Hence, the sum of the two angles of inclination is
π
2 . This gives arctan x + arctan 1/x ≡ π/2.

Alternative Method

Let a = arctan x and b = arctan 1/x. Consider
tan(a + b). By a compound-angle formula, this is

tan(a + b) = tan a + tan b

1 − tan a tan b

=
x + 1

x

1 − x · 1
x

.

Since the denominator is 0, both sides must be
undefined. We know that a, b ∈ (0, π/2). The only
sum of such numbers for which the tan function is
undefined is a + b = π/2. Hence,

arctan x + arctan 1/x ≡ π/2, as required.

4893. The first curve factorises as

y = x2(x + 1)(x − 1).

This is a positive quartic with a double root at
x = 0 and single roots at x = ±1. The second
curve factorises as

y = x2(x2 + 1)(x + 1)(x − 1).

This is a positive sextic also with a double root at
x = 0 and single roots at x = ±1.
Looking for intersections between the curves,

x4 − x2 = x6 − x2

=⇒ x6 − x4 = 0
=⇒ x4(x2 − 1) = 0
=⇒ x4(x + 1)(x − 1) = 0.

So, the curves are tangent (quadruple intersection)
at the origin, and they cross (single intersections)
at the intercepts x = ±1. The quartic is dashed in
the diagram:

x

y

1−1
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4894. Consider the suggested expressions. Firstly,

(sin 27° + cos 27°)2

= sin2 27° + 2 sin 27° cos 27° + cos2 27°
= 1 + sin 54°
= 1

4
(
5 +

√
5
)
.

This gives

sin 27° + cos 27° = 1
2

√
5 +

√
5.

Secondly,

(sin 27° − cos 27°)2

= sin2 27° − 2 sin 27° cos 27° + cos2 27°
= 1 − sin 54°
= 1

4
(
3 −

√
5
)
.

This gives

sin 27° − cos 27° = 1
2

√
3 −

√
5.

Doubling the equations and adding them,

4 sin 27° =
√

5 +
√

5 +
√

3 −
√

5, as required.

4895. We can derive the relevant product-to-sum formula
as follows:

cos(p + q) − cos(p − q) = 2 sin p sin q

=⇒ sin p sin q = 1
2
(
cos(p + q) + cos(p − q)

)
.

So, the integral is∫ 2π

0
sin ax sin bx dx

= 1
2

∫ 2π

0
cos(a + b)x + cos(a − b)x dx

= 1
2

[
sin
(
(a + b)x

)
+ sin

(
(a − b)x

)]2π

0

= 1
2

(
sin
(
2π(a + b)

)
+ sin

(
2π(a − b)

))
.

Since a, b are natural numbers, a + b and a − b

are integers. So, both terms in the above are zero,
because, for n ∈ Z, sin(2nπ) = 0. This gives the
required result:∫ 2π

0
sin ax sin bx dx = 0.

Nota Bene

The above result can also be shown directly by
symmetry, using the fact that sin ax and sin bx are
periodic, with periods dividing 2π. In some sense,
this makes the result “obvious”. It is quite difficult,
however, to make such an argument rigorous and
thus convincing to those who don’t yet understand
it. The algebraic approach is better.

4896. We prove the result by construction. Draw a line
through point P and vertex A1. If this line passes
through another vertex Ak, then we have the result
immediately, as a point on A1Ak can be written

p = λa1 + (1 − λ)ak.

Otherwise, the line passes through an edge. Call
this AkAk+1 and the point of intersection B.

A1

Ak+1

Ak

B

P

The position vector of B may be expressed as

b = λak + (1 − λ)ak+1.

So, the position vector of P is

p = µa1 + (1 − µ)b
= µa1 + (1 − µ)

(
λak + (1 − λ)ak+1

)
= µa1 + λ(1 − µ)ak + (1 − λ)(1 − µ)ak+1.

So, to set up the final result, set all constants λi

to zero, other than

λ1 = µ,

λk = λ(1 − µ),
λk+1 = (1 − λ)(1 − µ).

This gives p =
n∑

i=1
λiai. Furthermore,

∑
λi = λ1 + λk + λk+1

= µ + λ(1 − µ) + (1 − λ)(1 − µ)
≡ µ + 1 − µ

≡ 1, as required.

4897. The lhs of the proposed equation is

4T 3
n − T 2

n + 3(n + 1)5

= 1
2 n3(n + 1)3 − 1

4 n2(n + 1)2 + 3(n + 1)5

≡ 1
4 (n + 1)2(2n3(n + 1) − n2 + 12(n + 1)3).

The quartic factor is

2n4 + 2n3 − n2 + 12n3 + 36n2 + 36n + 12
≡ 2n4 + 14n3 + 35n2 + 36n + 12
≡ (n + 2)2(2n2 + 6n + 3).

So, the lhs is
1
4 (n + 1)2(n + 2)2(2n2 + 6n + 3).
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Starting again with the rhs,

4T 3
n+1 − T 2

n+1

= 1
2 (n + 1)3(n + 2)3 − 1

4 (n + 1)2(n + 2)2

≡ 1
4 (n + 1)2(n + 2)2(2(n + 1)(n + 2) − 1

)
≡ 1

4 (n + 1)2(n + 2)2(2n2 + 6n + 3
)
.

So, the algebra of the proof holds.

Nota Bene

The above is an inductive step. When combined
with a base case and some logical structure, it can
be turned into a formal proof by induction.

4898. We classify the restricted possibility space by the
order of rotational symmetry.

4 Order 4. There are four orientations for the
tile in the top left. Rotating the whole shape
through 90°, 180°, 270° fixes the orientations
of the other three. This gives four outcomes,
two of which are shown below:

2 Order 2. There are four options for the tile
in the top left, as before. This fixes the tile
in the bottom right. The orientations of the
other two tiles are bound to each other, which
would give 4 possibilities. However, one of
these produces rotational symmetry of order
4. So, there are 4 × 3 = 12 outcomes which
have rotational symmetry order 2.

The possibility space consists of the 16 outcomes
with rotational symmetry. Hence, the probability
that the symmetry is order 4 is 1/4.

4899. Let u = cos x, so that du = − sin xdx.∫ 1
sin3 x − sin x

dx

=
∫ 1

sin2 x(1 − sin2 x)
· − sin x dx

=
∫ 1

(1 − u2)u2 du.

Writing the integrand in partial fractions,
1

(1 − u)(1 + u)u2

≡ 1
u2 + 1

2(u + 1) − 1
2(u − 1) .

So, the integral is∫ 1
u2 + 1

2(u + 1) − 1
2(u − 1) du

= −u−1 + 1
2 ln

∣∣∣∣u + 1
u − 1

∣∣∣∣+ c

= 1
2 ln

∣∣∣∣cos x + 1
cos x − 1

∣∣∣∣− sec x + c.

4900. (a) The scenario is

C

A

X

B

Triangle ABC has side lengths (3r, 3r, 4r), so

∠ACX = ∠BCX = arcsin 2/3.

Hence, the angle between AC and the vertical
is α = arcsin 2/3 − 30°, and the angle between
BC and the vertical is β = arcsin 2/3 + 30°.
The last angle is duly γ = 180° − 2 arcsin 2/3.
The triangle of forces is as follows:

W
R1

R2
β

α

γ

(b) Using the sine rule,

R1 = sin β

sin γ
W

= sin(arcsin 2/3 + 30°)
sin(180° − 2 arcsin 2/3)W.

Using cos(arcsin 2/3) =
√

5/3, the denominator
simplifies as

sin(180° − 2 arcsin 2/3)
= sin(2 arcsin 2/3)
= 2 sin(arcsin 2/3) cos(arcsin 2/3)

= 4
√

5
9 .

The numerator simplifies as

sin(arcsin 2/3 + 30°)
= sin(arcsin 2/3) cos 30° + cos(arcsin 2/3) sin 30°

=
√

3
3 +

√
5

6 .

So, the final result is

R1 =
√

3
3 +

√
5

6
4

√
5

9

W

≡
(

3
8 + 3

4

√
3
5

)
W, as required.

End of 49th Hundred


